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V této studii byla zkoumána reakce mozku na stimulaci infrazvukem (IS) v blízkosti prahové 
hodnoty a nad prahovou hodnotou (frekvence zvuku < 20 Hz) za podmínek fMRI v klidovém 
stavu. Studie zahrnovala dvě po sobě jdoucí sezení. V prvním sezení podstoupilo 14 zdravých 
účastníků měření prahu slyšitelnosti a kategorické měření hlasitosti, při kterém byla hodnocena 
individuální vnímání hlasitosti IS při různých úrovních akustického tlaku (SPL). Ve druhé relaci 
se tito účastníci podrobili třem měřením v klidovém stavu, jednomu bez sluchové stimulace (bez 
tónu), jednomu s monaurálně prezentovaným 12Hz IS tónem (blízkým prahu) a jednomu s 
podobným tónem nad individuálním prahem slyšitelnosti odpovídajícím „středně hlasitému“ 
sluchovému vjemu (nadprahovému).
Analýza dat se zaměřila především na měření lokální konektivity pomocí regionální homogenity 
(ReHo), ale zahrnovala také analýzu nezávislých komponent (ICA) za účelem zkoumání 
meziregionální konektivity. Analýza ReHo odhalila významně vyšší lokální konektivitu v pravém 
horním temporálním gyru (STG) sousedícím s primární sluchovou kůrou, v předním cingulárním 
kortexu (ACC) a, při povolení menších velikostí klastrů, také v pravé amygdale (rAmyg) během 
stavu blízko prahu, ve srovnání s podmínkami nad prahem a bez tónu.
Další nezávislá komponentová analýza (ICA) odhalila rozsáhlé změny funkční konektivity, 
které se projevily silnější aktivací pravé amygdaly (rAmyg) v opačném kontrastu (bez tónu > 
blízko prahu) a také pravé horní frontální gyrus (rSFG) během stavu blízko prahu. Souhrnně 
lze říci, že tato studie jako první prokázala, že infrazvuk blízko prahu slyšitelnosti může 
vyvolat změny nervové aktivity v několika oblastech mozku, z nichž některé jsou známé svou 
účastí na zpracování sluchových vjemů, zatímco jiné jsou považovány za klíčové pro emoční a 
autonomní kontrolu. Tyto poznatky nám tedy umožňují spekulovat o tom, jak by mohlo mít 
nepřetržité vystavení (sub)liminálnímu IS patogenní vliv na organismus, avšak k potvrzení 
těchto poznatků jsou zapotřebí další (zejména longitudinální) studie.
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Úvod
Otázka, zda infrazvuk (IS; zvuk ve velmi nízkofrekvenčním rozsahu – 1
Hz < frekvence < 20 Hz) může představovat hrozbu pro fyzické a duševní zdraví, zůstává velmi 
diskutovaným tématem. Po desetiletí panoval všeobecně přijímaný názor, že frekvence IS jsou 
příliš nízké na to, aby je sluchový systém dokázal zpracovat, protože rozsah lidského sluchu se 
běžně uvádí pouze v rozmezí frekvencí od 20 do 20 000 Hz [1]. Tento názor byl podpořen řadou 
studií provedených na zvířatech i lidech, které prokázaly, že sluchový systém je vybaven několika 
mechanismy odbočení a útlumu, které se podílejí již v raných fázích zpracování signálu a 
způsobují, že sluch je při nízkých frekvencích poměrně necitlivý [2–7].
Nicméně představa, že IS nelze zpracovat v rámci sluchového systému, byla vyvrácena několika 
studiemi, v nichž byly zdokumentovány změny funkce kochley vyvolané IS u zvířat [8] i u 
normálně slyšících lidských účastníků [9]. Ve skutečnosti bylo opakovaně prokázáno, že IS mohou 
vnímat i lidé, pokud jsou podávány při velmi vysokých hladinách akustického tlaku (SPL) [10–17].  
V poslední době dvě studie fMRI také odhalily, že vystavení monaurálně prezentovanému 12Hz IS 
tónu s hladinami akustického tlaku > 110 dB vedlo k bilaterální aktivaci horního temporálního 
gyru (STG), což naznačuje, že fyziologické mechanismy, které jsou základem vnímání IS, mohou 
mít podobnosti s mechanismy zapojenými do „normálního sluchu“, a to i ve fázi vysoké úrovně 
kortikálního zpracování [18–19].

Mezitím se zdá, že panuje rostoucí shoda v tom, že lidé jsou skutečně vnímaví k IS a že 
vystavení nízkofrekvenčním zvukům (včetně zvuků ve frekvenčním spektru IS) může vyvolat 
vysokou míru nepohody a úzkosti [20]. IS však také padlo podezření, že podporuje vznik několika 
plně rozvinutých zdravotních symptomů, od poruch spánku, bolesti hlavy a závratí, přes tinnitus a 
hyperakuzis, až po záchvaty paniky a depresi typu „ “, které se podle zpráv vyskytují častěji u lidí 
žijících v blízkosti větrných parků [21–23]. Ačkoli bylo prokázáno, že hluk produkovaný větrnými 
turbínami může skutečně obsahovat značnou složku velmi nízké frekvence, emise IS dosahují 
maximální hladiny akustického tlaku pouze kolem 80 až 90 dB [24–27], což nemusí být dostatečně 
vysoká hodnota k překročení prahu vnímání . S ohledem na tyto výsledky Leventhall [1] dospěl k 
závěru, že „pokud zvuk neslyšíte a nemůžete jej vnímat jinými smysly a nemá na vás žádný vliv“. Je 
důležité, že tento názor je v souladu se současným stanoviskem Světové zdravotnické organizace 
(WHO), podle kterého „neexistují spolehlivé důkazy o tom, že infrazvuk pod prahem slyšitelnosti 
má fyziologické nebo psychologické účinky“ [28]. Zdá se však, že představa, podle níž musí být 
zvuk vnímán, aby mohl mít relevantní účinky na organismus, je nedostatečná, pokud jde o 
objektivní posouzení rizik IS, zejména pokud vezmeme v úvahu nejnovější pokroky ve výzkumu 
fyziologie vnitřního ucha a účinků podprahové sluchové stimulace (tj. stimulace pod prahem 
vnímání). Například bylo prokázáno, že expozice IS o frekvenci 5 Hz při hladinách akustického 
tlaku (SPL) pouhých 60–65 dB vyvolává u zvířat reakci komponent vnitřního ucha, jako jsou vnější 
vláskové buňky [29], a bylo navrženo, že stimulace vnějších vláskových buněk může mít také širší 
vliv na nervový systém prostřednictvím mozkového kmene [30–31]. Kromě toho existuje v 
kognitivní vědě dobře zdokumentovaný účinek, že fyziologie mozku a chování mohou být 
ovlivněny širokou škálou podprahově prezentovaných podnětů, včetně podnětů ze sluchové 
oblasti [32–34].

Proto jsme se rozhodli zabývat se otázkou, zda IS blízko prahu slyšitelnosti může také 
ovlivňovat celkovou mozkovou aktivitu a zda se účinky stimulace významně liší od účinků 
vyvolaných IS nad prahem slyšitelnosti. V našem experimentu byly IS stimuly aplikovány během 
takzvaného klidového stavu, kdy byli účastníci požádáni, aby leželi klidně ve skeneru se zavřenýma 
očima a pasivně vnímali zvuk. Během klidového stavu se objevuje charakteristický vzorec 
endogenní rozsáhlé mozkové aktivity, který obvykle zahrnuje
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společná aktivace více oblastí mozku, jako je mediální prefrontální kůra (MPFC), zadní cingulární 
kůra (PCC), precuneus, dolní parietální lalok (IPL), laterální temporální kůra (LTC) a 
hipokampální formace (HC) [35–36]. Tato aktivita způsobuje kolísání signálu závislého na kyslíku 
v krvi (BOLD), který lze poté vizualizovat pomocí funkční magnetické rezonance v klidovém stavu 
(rsfMRI). Skutečnost, že tyto oblasti mozku vykazují konzistentní pokles aktivity během provádění 
úkolů a nárůst během fixace nebo odpočinku, vedla také k pojmu tzv. default mode network [37]. 
Vzhledem k tomu, že velká část IS, které jsme vystaveni v našem každodenním prostředí, je 
produkována nepřetržitými zdroji, jako jsou větrné turbíny, doprava (auta a letadla) nebo 
klimatizační systémy, usoudili jsme, že IS může spíše působit na nervový systém jako konstantní a 
subtilní zdroj (sub-)liminal stimu lace, než jako zdroj bodových stimulačních událostí. Na rozdíl 
od přístupu založeného na událostech, který by se vyznačoval krátkými změnami v prezentaci 
podnětů a sběru dat (tzv. „řídké vzorkování“), nám rsfMRI umožňuje studovat reakci mozku na IS 
za podmínek, které se více podobají podmínkám mimo laboratoř, kde je IS často prezentován po 
dlouhou dobu bez přerušení v podávání podnětů. Lze argumentovat, že způsob, jakým je termín 
„klidový stav“ používán v tomto článku, je v rozporu s běžným chápáním klidového stavu jako 
měřítka základní mozkové aktivity bez experimentální stimulace nebo úkolu. Vědci si však stále 
více uvědomují, že rsfMRI nelze použít pouze jako vhodný nástroj pro měření stabilních 
charakteristik, jako jsou rozdíly způsobené pohlavním dimorfismem nebo zdravotním stavem. Ve 
skutečnosti jsou spontánní, samovolně generované mentální procesy, které se projevují jako 
momentální výkyvy nálady účastníka nebo „afektivní zabarvení“ myšlenek a vzpomínek, 
nevyhnutelnou součástí každého měření rsfMRI a opakovaně se tvrdí, že značná část statistické 
variance získané během sběru dat může být ve skutečnosti vysvětlena heterogenitou mentálních 
stavů účastníka [38–39]. Právě tento typ dat – obohacený o různé zkušenostní aspekty 
shromážděné během dlouhého stimulačního intervalu, na rozdíl od krátkých úryvků okamžité 
reakce mozku na nový podnět – nám proto umožňuje nejlépe odpovědět na výše uvedené 
výzkumné otázky.

Abychom získali robustnější signál pro srovnání různých stavů v klidu, zaměřili jsme se v naší 
analýze na regionální homogenitu (ReHo), což je měřítko, které zachycuje synchronizaci mozkové 
aktivity v klidu v sousedních voxelech – tzv. lokální konektivitu. Na rozdíl od funkční konektivity, 
která odhaluje synchronizaci předem definované oblasti mozku, ReHo měří lokální synchronizaci 
spontánních fMRI signálů [40–42].
Důležité je, že ReHo obchází nutnost apriori definovat počáteční oblasti, a proto umožňuje 
nezaujatou analýzu dat v klidovém stavu celého mozku. Dále bylo také prokázáno, že ReHo je 
vyšší v hlavních oblastech default mode network [43]. Za účelem získání komplexnějšího 
hodnocení účinku IS byla jako pomocná analýza provedena nezávislá komponentová analýza 
(ICA) [44]. Podobně jako ReHo představuje ICA metodu založenou na datech, která se vzdává 
jakýchkoli počátečních předpokladů o prostorovém umístění mozkových aktivací a zároveň 
umožňuje zkoumat časovou dynamiku mezi prostorově oddělenějšími nezávislými oblastmi. Obě 
metody se tedy vzájemně doplňují v tom smyslu, že umožňují nestrannou charakterizaci reakce 
mozku na IS jak na lokální, tak na síťové úrovni.

Experimentální postupy
Účastníci
Studie se na základě písemného informovaného souhlasu zúčastnilo čtrnáct zdravých subjektů (6 
žen) ve věku 18 až 30 let (průměr = 23,4 let; SD = 3,0). Studie byla provedena
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v souladu s Helsinskou deklarací a se souhlasem etické komise Německé psychologické asociace 
(DGP). Všichni účastníci měli normální nebo korigovaný zrak a normální sluch (posouzeno 
pomocí dotazníku ISO (2009) [45], který vyplnili všichni účastníci). Žádný z účastníků neměl v 
anamnéze neurologické, závažné zdravotní nebo psychiatrické onemocnění. Všichni účastníci byli 
praváci, jak bylo posouzeno pomocí dotazníku Edinburgh handedness [46].

Akustická charakteristika
Před fMRI sezením byly hladiny akustického tlaku (SPL) pro testovací podněty kalibrovány 
individuálně podle výsledků měření prahu slyšitelnosti [47] a kategorického měření hlasitosti [48].

Hodnocení prahů slyšitelnosti účastníků zahrnovalo prezentaci 14 čistých tónů o frekvencích 
od 2,5 do 125 Hz, které byly prezentovány monaurálně pravému uchu. Experiment byl rozdělen do 
dvou částí oddělených 15minutovou přestávkou. Na začátku každé části byly jako první podnět 
prezentovány zvuky se standardními frekvencemi audiometru 125 Hz (část 1) a 80 Hz (část 2), což 
účastníkům umožnilo přizpůsobit se experimentálnímu prostředí. Zbývající testovací podněty byly 
prezentovány pseudonáhodným způsobem, což zajistilo, že frekvence dvou po sobě jdoucích běhů 
se lišila o více než oktávu. Hodnocení individuálních prahů slyšitelnosti připomínalo nenucený 
vážený adaptivní postup nahoru-dolů, jak jej popsal Kaernbach [49], při kterém byly prezentovány 
pokusy sestávající z dvojice časových intervalů (označených A a B) oddělených pauzou 200 ms. 
Během každého pokusu byl testovací podnět náhodně přiřazen buď intervalu A, nebo B a úkolem 
účastníků bylo pomocí klávesnice nebo počítačové myši určit, který interval obsahoval podnět, 
přičemž dostávali vizuální zpětnou vazbu o správnosti svých odpovědí. Vzhledem k nelineárním 
charakteristikám lidské sluchové křivky, tj. zvuky o různých frekvencích musí být také podávány 
při různých hladinách akustického tlaku (SPL), aby vyvolaly stejný vjem hlasitosti (viz kontury 
stejné hlasitosti; ISO (2003) [50] a [51]), byl každý testovací podnět zpočátku prezentován při 20 
fonu. To znamená, že dB SPL každého testovacího stimulu byl zvolen tak, aby vyvolal stejnou 
hlasitost jako tón 1000 Hz prezentovaný při 20 dB SPL (podle definice se 20 fonů rovná 20 dB SPL 
při 1000 Hz). Tímto způsobem jsme zajistili, že hodnocení prahu pro každou frekvenci začalo se 
stejnou intenzitou stimulu a že počáteční prezentace tónu byla pro účastníky snadno slyšitelná.
Při správné odpovědi byla intenzita stimulu snížena o jeden stupeň (počáteční velikost kroku 4 
dB), zatímco nesprávná odpověď vedla ke zvýšení o tři stupně. Pokud si účastníci nebyli jisti, byla 
intenzita stimulu zvýšena o jeden stupeň. Po každém druhém obrácení (tj. po odpovědi vedoucí 
ke snížení intenzity (správná odpověď) následované odpovědí vedoucí ke zvýšení intenzity 
(nesprávná nebo nejistá odpověď) nebo naopak) byla velikost kroku snížena na polovinu, až bylo 
dosaženo konečné velikosti kroku 1 dB. Po 12 zvratech byla prahová hodnota sluchu pro 
příslušnou testovací frekvenci vypočítána jako aritmetický průměr všech (adaptivních) hodnot po 
čtvrtém zvratu (velikost kroku 1 dB).

Kategorické měřítko hlasitosti zahrnovalo prezentaci čistých tónů s frekvencemi 8, 12, 16, 20, 
32, 40, 63 a 125 Hz a délkou trvání 1600 ms, které byly podávány monaurálně do pravého ucha 
účastníka. Úkolem účastníka bylo ohodnotit hlasitost daného testovacího stimulu podle 11 
možných odpovědí s předem definovanými kategoriemi od „neslyšitelné“, „tiché“, „střední“ až po 
„hlasité“ a „extrémně hlasité“ pomocí počítačové myši. Experiment připomínal adaptivní postup 
[52] rozdělený do dvou fází. Během první fáze byly testovací podněty prezentovány při 80 fonu a 
intenzita podnětu byla zvyšována v adaptivních krocích v rozmezí od 5 do 15 dB v krocích po 5 
dB, dokud nebyly podněty vnímány jako „extrémně hlasité“ nebo nebylo dosaženo předem 
definované maximální úrovně intenzity podnětu (pro frekvence pod 32 Hz byla maximální 
intenzita zvuku nastavena na 124 dB SPL, aby byli účastníci chráněni před škodlivým

https://doi.org/10.1371/journal.pone.0174420
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zvuková expozice). Intenzita byla poté snižována, dokud nebyly podněty neslyšitelné, a zvyšována, 
dokud nebyly opět slyšitelné. Během druhé fáze byly zbývající úrovně hlasitosti odhadnuty pomocí 
lineární interpolace a prezentovány náhodným způsobem, což nám umožnilo shromáždit více dat 
pro „střední“ úroveň hlasitosti. Škálování hlasitosti bylo provedeno dvakrát každým účastníkem s 
minimální přestávkou jedné hodiny mezi jednotlivými sezeními.

Výsledky měření prahu slyšitelnosti byly poté použity k definování podnětů pro stav blízko 
prahu, zatímco kategorické škálování hlasitosti zajistilo, že podnět nad prahem byl vnímán jako 
stejně hlasitý u všech účastníků. Pro tuto studii byl vybrán čistý sinusový stimul s frekvencí 12 Hz. 
Průměrná (mediánová) monaurální prahová hodnota sluchu pro čistý tón 12 Hz byla 86,5 dB 
SPL, s rozptylem mezi jednotlivci od 79 do
96,5 dB SPL. Pro podmínky blížící se prahu byly vybrány podněty specifické pro jednotlivé 
účastníky s hodnotami SPL o 2 dB nižšími než individuální prahová hodnota sluchu. Průměrná 
(mediánová) hodnota SPL pro „středně hlasitý“ tón stanovená v kategoriálních měřeních 
hlasitosti byla 122,3 dB SPL s minimem 111 dB a maximem 124 dB u všech účastníků (podrobný 
popis viz tabulka 1). Pro měření prahu slyšitelnosti a kategorického měření hlasitosti u byly 
podněty prezentovány prostřednictvím stejného zdroje zvuku, který byl použit i v následující 
fMRI relaci, a experimenty byly prováděny v zvukotěsné kabině vedle místnosti se skenerem.

Postup skenování
Snímky byly pořízeny na skeneru 3T Verio MRI (Siemens Medical Systems, Erlangen, Německo) 
pomocí 12kanálové radiofrekvenční cívky pro hlavu. Nejprve byly pořízeny anatomické snímky s 
vysokým rozlišením pomocí trojrozměrné sekvence magnetizačně připraveného gradientního 
echa (MPRAGE) s váhou T1, opakování = 2300 ms; doba echa = 3,03 ms; úhel překlopení = 9˚; 
matice 256 × 256 × 192, (1 mm)3  velikost voxelu. Funkční snímky celého mozku byly pořízeny 
pomocí T2* vážené EPI sekvence citlivé na BOLD kontrast (TR = 2000 ms,
TE = 30 ms, obrazová matice = 64 × 64, FOV = (224 mm)2 , úhel překlopení = 80˚, tloušťka řezu = 3,5

Tabulka 1. Akustická charakteristika 14 účastníků podle prahu slyšitelnosti a měření kategorické hlasitosti pro IS-
čistý tón při 12 Hz.

Účastníci (n = 14) HT (dB SPL) ST (dB SPL)
1 93 123
2 86 124
3 89 124
4 86 124
5 93 124
6 79 123
7 92 119
8 85 121
9 91 124
10 96 121
11 82 123
12 87 124
13 80 119
14 85 119

HT, prahová hodnota sluchu v dB SPL; ST, nadprahový stimul v dB SPL, odpovídající vnímané hlasitosti „střední“. 
(Maximální úroveň stimulu byla omezena na 124 dB SPL).

https://doi.org/10.1371/journal.pone.0174420.t001

https://doi.org/10.1371/journal.pone.0174420
https://doi.org/10.1371/journal.pone.0174420.t001
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Obr. 1. Schematický nákres experimentálního uspořádání.

https://doi.org/10.1371/journal.pone.0174420.g001

mm, 35 téměř axiálních řezů, zarovnaných s linií AC/PC). Před zahájením sběru dat v klidovém 
stavu byli účastníci ve skeneru asi 10 minut. Během těchto 10 minut byl spuštěn lokalizátor a byly 
pořízeny další snímky, aby si účastníci mohli zvyknout na hluk skeneru.

Protokol stimulace fMRI
Zvukové signály byly generovány 24bitovým DAC zařízením (RME Fireface UC) připojeným k 
osobnímu počítači, zesilovány nebo zeslabovány a přiváděny do upraveného reproduktorového 
systému mimo místnost skeneru. Reproduktorový systém byl připojen k polyetylenové trubici 
(délka 8 m, vnitřní průměr 14 mm) vedoucí k pravému uchu účastníka (obr. 1). Aby se zabránilo 
slyšitelným přechodovým jevům, byly čisté tóny o frekvenci 12 Hz použité pro stimulaci 
zesilovány a zeslabovány pomocí cos2  rampy s náběhem a poklesem 250 ms (3 cykly) a měly 
celkovou délku 200 s. Běžná ušní zátka
(E-A-R One Touch, 3M, St. Paul, USA) s hodnocením redukce hluku (NRR) 33 dB byl použit pro 
levé ucho. Kromě toho byla obě uši pokryta chrániči sluchu Silverline 140858 (NRR: 22 dB), aby se 
minimalizovalo rušení sluchového vnímání hlukem skeneru. Zdroj infrazvuku byl navržen tak, aby 
vykazoval obzvláště nízkou tvorbu harmonických, tj. amplitudy všech harmonických jsou výrazně 
pod prahem slyšitelnosti [47]. Aby bylo možné v této studii kontrolovat vyšší harmonické, byly 
hladiny akustického tlaku (SPL) měřeny pomocí optického mikrofonu bez kovových částí 
(Sennheiser MO-2000), který byl připojen k zvukové dráze pomocí T-kusu 20 cm před uchem. 
Účastníci byli poučeni, aby pozorně poslouchali a vyhýbali se pohybům těla [53]. Během skenovací 
relace každý účastník podstoupil jedno nestimulované a dvě stimulovaná měření (série), z nichž 
každá trvala 200 s. Nestimulovaná série nezahrnovala žádnou sluchovou stimulaci (bez tónu), 
zatímco během dvou stimulačních sérií byl prezentován 12Hz IS tón buď o 2 dB pod individuální 
hranicí slyšitelnosti (blízko prahu), nebo na

https://doi.org/10.1371/journal.pone.0174420
https://doi.org/10.1371/journal.pone.0174420.g001
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„střední“ vnímaná hlasitost (nadprahová). Před zahájením každého běhu byli účastníci 
instruováni, aby měli zavřené oči, relaxovali a na nic konkrétního nemysleli. Pořadí tří běhů v 
klidovém stavu bylo mezi účastníky vyváženo a účastníci nebyli informováni o pořadí, v jakém 
byly běhy prováděny. 

Analýza dat – regionální homogenita (ReHo)
Prvních pět svazků každého cyklu bylo vyřazeno, aby se magnetizace mohla přiblížit dynamické 
rovnováze. Část předběžného zpracování dat, včetně časování řezů, korekce pohybu hlavy ( ) 
(metoda nejmenších čtverců a 6parametrová prostorová transformace) a prostorové normalizace 
podle šablony Montreal Neurological Institute (MNI) (velikost voxelu 3 mm × 3 mm × 3 mm) byla 
provedena pomocí SPM5 a Data Processing Assistant for Resting-State fMRI (DPARSF, [54]). Byl 
použit prostorový filtr 4 mm FWHM (plná šířka v polovině maxima) . Účastníci, u kterých byl 
během skenování zaznamenán pohyb hlavy nad 3 mm maximálního posunu (v jakémkoli směru x, 
y nebo z) a 1,0˚ maximální rotace, byli vyloučeni. Po předběžném zpracování byly odstraněny 
lineární trendy. Poté byla data fMRI časově filtrována pásmovým filtrem (0,01–0,08 Hz), aby se 
snížil nízkofrekvenční drift a vysokofrekvenční respirační a srdeční šum [55]. Analýza ReHo byla 
provedena pomocí DPARSF [56–59]. ReHo vychází z předchozích zpráv, že aktivita fMRI se s větší 
pravděpodobností vyskytuje v klastrech několika prostorově sousedících voxelech než v jediném 
voxelu [60–61]. ReHo proto předpokládá, že daný voxel je dočasně podobný voxelům sousedním. 
ReHo bylo původně vynalezeno pro analýzu (pomalých) událostmi souvisejících fMRI dat (Zang 
et al., 2004) [59], ale je stejně vhodné pro blokový design a fMRI v klidovém stavu. U každého 
účastníka byla analýza ReHo provedena na bázi voxelů výpočtem Kendallova koeficientu shody 
(KKC, [62]) časové řady daného voxelu s časovými řadami jeho sousedů (26 voxelů). Hodnota 
KCC byla přiřazena příslušnému voxelu a byly získány jednotlivé mapy KCC. ReHo bylo 
vypočítáno v rámci mozkové masky, která byla získána odstraněním tkání mimo mozek pomocí 
softwaru MRIcro [63].

Porovnání celého mozku mezi jednotlivými stavy bylo vypočítáno na základě výsledných map 
ReHo. Byla použita výšková prahová hodnota p < 0,001 a velikost klastru korigovaná pomocí 
simulace Monte Carlo (10 000 iterací). Významné účinky byly zaznamenány, když objem klastru 
byl větší než minimální velikost klastru stanovená simulací Monte Carlo pro objem celého mozku 
(> 22 voxelů), nad kterou byla pravděpodobnost chyby typu I nižší než 0,05 (AlphaSim; [64]). Z 
výsledných klastrů byly extrahovány hodnoty ReHo pro všechny tři podmínky. Souřadnice jsou 
uvedeny podle prostoru MNI. Oblasti mozku byly definovány pomocí nástroje SPM-based 
automated anatomical labeling (AAL) atlas toolbox [65] a uvedeny jako Brodmannovy oblasti 
(BA).

Analýza dat – nezávislá komponentová analýza (ICA)
Nezávislá komponentová analýza (ICA) je explorativní analytický nástroj, ve kterém jsou zdrojové 
signály slepě obnovovány [44] ze směsí zdrojů. ICA byla provedena pomocí softwaru GIFT 
(http://icatb.sourceforge.net/; [66]) s použitím algoritmu Infomax. Byla použita předzpracovaná 
data ze všech sezení a od všech jedinců. Optimální počet prostorově nezávislých sítí v klidovém 
stavu (N), které měly být extrahovány, byl odhadnut softwarem (N = 21). Sítě byly identifikovány 
automaticky pomocí předdefinovaných šablon v GIFT a později jedním ze spoluautorů. Z 21 
komponent bylo 12 identifikováno jako sítě v klidovém stavu a převedeno do druhé úrovně 
analýzy v SPM12 (párový t-test, FWE p<0,01 a průměrný posun snímků [67] jako kovariáta).

https://doi.org/10.1371/journal.pone.0174420
http://icatb.sourceforge.net/
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Obr. 2. Výsledky map regionální homogenity kontrastu celého mozku (ReHo) získané během stavu blízko 
prahové hodnoty vs. stav bez tónu. Vyšší lokální konektivita v: (A) pravém horním temporálním gyru (rSTG) v 
sagitálním (vlevo), koronálním (uprostřed) a transversálním (vpravo) řezu, stejně jako v (B) přední cingulární 
kůře (ACC).
(p < 0,001, velikost klastru korigována pomocí simulace Monte Carlo, k > 22). (C) Vyšší lokální konektivita v pravé 
amygdale (rAmyg) při použití mírnější prahové hodnoty klastru k > 10.

https://doi.org/10.1371/journal.pone.0174420.g002

Výsledky
ReHo
Při výpočtu analýzy celého mozku porovnávající ReHo odvozené z akvizic v klidovém stavu pro 
různé stimulační podmínky jsme zjistili významně vyšší lokální konektivitu v pravém horním 
temporálním gyru (rSTG) (30, -15, -6) sousedícím s primární sluchovou kůrou během stavu blízko 
prahu ve srovnání se stavem bez tónu. Jediný další významný rozdíl mezi všemi možnými 
párovými kontrasty map ReHo byl pozorován při porovnání stavu blízko prahu s stavem nad 
prahem. Zde jsme zjistili významně vyšší ReHo v přední cingulární kůře (ACC) (-12, 27, 33) 
během stavu blízko prahu.
Zajímavé je, že při použití mírnější prahové hodnoty rozsahu klastru k > 10 jsme také zjistili vyšší 
ReHo v pravé amygdale (rAmyg) (21, -3, -15) (výsledky jsou shrnuty na obr. 2 a v tabulce 2). 
Abychom prozkoumali vzorec ReHo ve všech třech podmínkách, extrahovali jsme beta hodnoty z 
příslušných klastrů pozorovaných v kontrastech celého mozku. Tyto hodnoty jsou znázorněny 
jako boxploty na obr. 3 a všechny parametry statistické analýzy jsou také shrnuty v tabulce 3. 
Souhrnně lze říci, že bylo prokázáno, že prodloužená stimulace IS nad prahovou hodnotou, kterou 
všichni účastníci jasně vnímali, nevedla k statisticky významné aktivaci v žádné části mozku. 
Naopak stimulace blízko prahové hodnoty vedla k vyšší lokální konektivitě ve více oblastech 
mozku ve srovnání s podmínkou bez tónu i podmínkou nadprahové stimulace. Je však třeba 
poznamenat, že extrakce beta hodnot byla zvolena pouze pro ilustrační účely a závěry byly 
vyvozeny z původní analýzy.

https://doi.org/10.1371/journal.pone.0174420
https://doi.org/10.1371/journal.pone.0174420.g002
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Tabulka 2. Výsledky analýzy celého mozku porovnávající regionální homogenitu (ReHo) odvozenou z akvizic v klidovém stavu během podmínek 
blízkých prahové hodnotě vs. bez tónu.

Oblast BA Špičkové souřadnice (MNI) T-skóre Rozsah
Pravý horní temporální gyrus (rSTG) 48 30, -15, -6 4,16 37
Přední cingulární kůra (ACC) 32 -12, 27, 33 4,28 3
Pravá amygdala (rAmyg) 21, -3, -15 4,26 12

BA, Brodmannova oblast; MNI, Montrealský neurologický institut. (p < 0,001, k > 22 pro rSTG a ACC; p < 0,001, k > 10 pro rAmgy).

https://doi.org/10.1371/journal.pone.0174420.t002

Obr. 3. Boxplot znázorňující rozdíly v regionální homogenitě (ReHo) v různých podmínkách.

https://doi.org/10.1371/journal.pone.0174420.g003

ICA
Z 21 komponent analýzy ICA bylo 12 identifikováno jako sítě v klidovém stavu: tři dorzální sítě v 
defaultním režimu (DMN; R = 0,4, 0,3 a 0,2), dvě ventrální DMN (R = 0,5 a 0,3), dvě levé sítě 
výkonné kontroly (R = 0,27 a 0,25), jedna senzomotorická síť (R = 0,3), jedna síť bazálních ganglií 
(R = 0,24), jedna vizuálně-prostorová síť (R = 0,31), jedna zadní síť salience (R = 0,15) a jedna 
sluchová síť (R = 0,16). Významné rozdíly mezi stavy jsou uvedeny v tabulce 4. Snížená funkční 
konektivita – ve srovnání s podmínkou bez tónu – byla zjištěna během klidového stavu při 
prezentaci tónu blízko prahové hodnoty v pravé amygdale (rAmyg) v senzomotorické síti. Klidové 
stavy s prezentací tónu blízko prahové hodnoty byly spojeny se zvýšenou funkční konektivitou v 
pravé horní frontální kůře (rSFG) v levé výkonné kontrolní síti ve srovnání s podmínkou bez tónu.

Tabulka 3. Výsledky ReHo. Statistická analýza hodnot beta extrahovaných z příslušných klastrů pozorovaných v 
kontrastech celého mozku.

bez tónu vs. blízko prahu bez tónu vs. supra-thr. near- vs. supra-thr.
rSTG t(13) = -9,03, p < 0,001 t(13) = -1,66, p = 0,12 t(13) = 2,55, p < 0,05
ACC t(13) = -3,48, p < 0,01 t(13) = -0,43, p = 0,67 t(13) = 6,19, p < 0,001
rAmyg t(13) = -2,62, p < 0,05 t(13) = -1,31, p = 0,21 t(13) = 2,41, p < 0,05

https://doi.org/10.1371/journal.pone.0174420.t003

https://doi.org/10.1371/journal.pone.0174420
https://doi.org/10.1371/journal.pone.0174420.t002
https://doi.org/10.1371/journal.pone.0174420.g003
https://doi.org/10.1371/journal.pone.0174420.t003
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Tabulka 4. Významné rozdíly ve stavu fMRI ICA v klidovém stavu.

Síť Označení Souřadnice T-skóre Velikost klastru (voxely) P-hodnota
- bez tónu > blízko prahové hodnoty -
Senzomotorický rAmgy 28, -6, -18 6,43 74 0,003 (úroveň klastru FWE)
- bez tónu < blízko prahové hodnoty -
Levá výkonná kontrola rFSG 22, 12, 64 4,9 63 0,009 (úroveň klastru FWE)
- blízko prahové hodnoty > nad prahovou hodnotou -
Dorsální DMN Mozkový mozek IV-V 16, -42, -18 5,36 8 0,008 (vrcholová úroveň FWE)

https://doi.org/10.1371/journal.pone.0174420.t004

stav. Kromě toho došlo ke zvýšení funkční konektivity v lalocích IV a V levého mozečku v DMN u 
sezení blízko prahové hodnoty ve srovnání se sezeními nad prahovou hodnotou.

Diskuse
Výsledky této studie lze shrnout následovně: Prodloužená expozice IS blízko individuální prahové 
hodnoty sluchu účastníků vedla k vyšší lokální konektivitě ve třech odlišných oblastech mozku – 
rSTG, ACC a rAmyg –, zatímco u stimulace nad prahovou hodnotou sluchu nebyl žádný takový 
účinek pozorován. Naše data také ukazují, že IS blízko prahu byla spojena se změnami konektivity 
na úrovni sítě, což zdůrazňuje roli rAmyg při zpracování IS. Podle našich znalostí je tato studie 
první, která prokázala, že IS blízko prahu má nejen fyziologické účinky, ale že neurální reakce 
zahrnuje aktivaci oblastí mozku, které jsou důležité pro sluchové zpracování, ale také pro emoční a 
autonomní kontrolu. Tyto poznatky nám tedy umožňují zamyslet se nad tím, jak by (sub)liminální 
IS mohly vyvolat řadu fyziologických i psychologických zdravotních problémů, které byly dosud 
pouze volně přičítány vystavení hluku v nízkofrekvenčním a velmi nízkofrekvenčním spektru.

Dosud jsou důkazy o vlivu IS na mozkovou aktivitu omezeny na dvě studie fMRI. Dommes et 
al. [18] jako první prokázali, že monaurální stimulace tónem IS o frekvenci 12 Hz vedla k aktivaci 
bilaterální STG, když byly podněty aplikovány při SPL 110 i 120, ale ne při 90 dB. Tato 
průkopnická studie však trpěla metodologickým nedostatkem, protože během stimulace 12 Hz 
byly přítomny harmonické 36 Hz, což ponechávalo určitý prostor pro pochybnosti, zda to byla 
skutečně složka IS, která vyvolala nervovou reakci. Kromě toho Dommes et al. (2009) nemohli 
odkazovat na psychofyzikální data o prazích slyšitelnosti účastníků nebo verbálních zprávách, a 
proto mohli pouze spekulovat, že expozice IS při 110 a 120 dB musela vést ke sluchovému vjemu, 
zatímco stimulace při 90 dB neměla překročit práh slyšitelnosti. Nedávno Weichenberger
et al. [19] také popsali bilaterální aktivaci STG v reakci na stimulaci IS nad prahovou hodnotou, 
avšak v této studii bylo použito vylepšené nastavení, které zabránilo pronikání vyšších 
harmonických do uší účastníků, v kombinaci s akusticky dobře charakterizovanými účastníky, 
kteří po skenování podávali verbální zprávy. Překvapivě se v této studii setkáváme s úplně 
odlišnou situací, protože aktivace STG nebyla přítomna během stimulace nad prahovou 
hodnotou, ale byla jasně přítomna, když byla IS podávána blízko prahu slyšitelnosti. Tyto výsledky 
jsou obzvláště pozoruhodné, protože nejen experimentální nastavení, ale také 11 ze 14 účastníků 
bylo identických ve studii Weichenberger et al. [19] a v této studii. Zdá se tedy, že zdánlivě 
protichůdné výsledky nelze připsat odlišným přístrojům nebo účastníkům, ale spíše poukazují na 
skutečně odlišné nervové reakce, které byly odhaleny díky povaze sběru dat a časovému průběhu 
aplikace stimulů zvolenému v této studii. Jelikož nás zajímalo studium reakce mozku
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Abychom dosáhli IS za podmínek, které se více podobají podmínkám mimo laboratoř, zvolili jsme 
výrazně delší stimulační intervaly (200 s) a také jsme zajistili konstantní úroveň stimula ulace po 
celou dobu intervalu. To je v kontrastu s výše uvedenými studiemi, ve kterých byly použity krátké 
stimulační intervaly sestávající z několika po sobě jdoucích tónových impulsů (1 a 3 s) s 
prokládaným snímáním obrazu. Absence aktivace STG během expozice IS nad prahovou 
hodnotou by proto mohla být výsledkem adaptace specifické pro stimul, podle které signál BOLD 
postupně klesá v reakci na pokračující podávání stimulu [68–69]. Ačkoli však byly v auditivní kůře 
zvířat zaznamenány adaptační časy specifické pro stimul trvající až desítky sekund [70], o adaptaci 
v porovnatelném časovém měřítku u lidí není nic známo. Kromě toho toto vysvětlení nemůže 
vysvětlit, proč by stimulace blízko prahu byla těmito mechanismy ovlivněna v menší míře. 
Naopak, předpokládáme, že naše výsledky spíše odrážejí komplexní zapojení různých 
fyziologických procesů v reakci na IS blízko prahu a nad prahem, jakož i interference 
pozornostních efektů, které mohou hrát stále důležitější roli, když jsou podněty prezentovány po 
delší dobu. Několik studií poskytuje důkazy o existenci „podvědomé sluchové dráhy“ pro IS, podle 
které může IS působit na organismus prostřednictvím vnějších vláskových buněk, i když je 
prezentován při SPL pod prahem slyšitelnosti [71, 31]. Zatímco vnitřní vláskové buňky – hlavní 
převodníky signálu zapojené do „vědomého sluchu“ – se spojují s fuziformními buňkami 
kochleárního jádra, odkud je signál dále přenášen do vyšších úrovní sluchového systému, vnější 
vláskové buňky končí v oblastech granulárních buněk kochleárního jádra.
[72] a odtud se připojují k četným sluchovým i nesluchovým kortikálním zpracovávacím místům 
[73]. Je důležité, že vzhledem k tomu, že některá z těchto center se podílejí na kontrole pozornosti 
a vzrušení [74], bylo navrženo, že aktivace této dráhy by mohla například probudit lidi v noci, 
přičemž by nebyli schopni určit, co vlastně způsobilo jejich probuzení [75]. Podobně v našem 
experimentu účastníci neustále hádali, zda ke stimulaci skutečně došlo, nebo ne, když byla 
prezentována IS blízko prahu, zatímco během stimulace nad prahem byli účastníci jasně schopni 
soustředit pozornost na vjem nebo od něj odvést pozornost po celou dobu trvání stimulu. Proto se 
domníváme, že trvalé vystavení nadprahové IS mohlo vést k top-down útlumu signálu 
prostřednictvím mechanismů pozornosti, zatímco při absenci jasně identifikovatelného vjemu 
zůstala aktivace STG vysoká. Je však třeba zmínit, že průměrná (mediánová) hladina akustického 
tlaku nadprahové stimulace (122,3 dB SPL, stanovená pomocí individuálního měřítka hlasitosti) 
byla velmi blízko bezpečnostní hranici 124 dB SPL, což pravděpodobně ukazuje na přítomnost 
stropního efektu. Proto nemůžeme vyloučit, že účastníci by mohli hlásit středně hlasitý sluchový 
vjem i při ještě vyšších hodnotách SPL, pokud by nám naše etické pokyny umožňovaly použít 
stimuly o takové intenzitě. Stropový efekt mohl vést k mírným rozporům v mezilidském vnímání 
hlasitosti během nadprahových běhů, a tím způsobit další variabilitu v našich zobrazovacích 
datech. Nicméně docházíme k závěru, že tento efekt pravděpodobně nebyl dostatečně výrazný, aby 
potlačil jinak významný efekt. Je také třeba poznamenat, že na rozdíl od výše uvedených studií o 
zpracování IS vedla stimulace blízko prahu k kortikální odezvě na ipsilaterální straně, zatímco při 
použití stimulace nad prahem došlo k bihemisferické, ale také silnější odezvě na kontralaterální 
straně (tj. levé sluchové kůře) [18–19]. To se dotýká aspektu předpokládané lateralizace 
sluchového systému, jehož skutečná podstata je stále předmětem probíhající debaty, protože 
existují důkazy jak ve prospěch kontralaterální dominance u monaurálně prezentovaných zvuků 
[76–77], tak i ve prospěch preference levé hemisféry bez ohledu na to, které ucho je stimulováno 
(Devlin et al., 2003) [78]. Zdá se tedy, že zatímco předchozí zprávy podporují představu 
„kontralaterální dominance“ rozšířené na zvuky v infrazvukovém spektru, výsledky současných 
studií lze spíše vysvětlit skutečností, že evokované
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otoakustické emise (které jsou generovány prostřednictvím vnějších vláskových buněk) bývají 
také výraznější v pravém uchu [79–80]. Je však třeba shromáždit více informací o tom, jak jsou 
signály OHC zpracovávány na úrovni mozkového kmene a jakým způsobem aktivace OHC 
ovlivňuje činnost sluchových (a případně nesluchových) center.

ACC je obecně považován za klíčový faktor při monitorování a řešení kognitivních konfliktů 
[81–83] i emocionálních konfliktů [84–87]. Zajímavé je, že nedávná metaanalýza provedená 
Mene- guzzo et al. [88] také odhalila, že ACC spolehlivě vykazuje aktivaci v reakci na sub ní i 
supraliminálně prezentované vzrušující podněty, což vedlo autory k závěru, že tato oblast mozku 
může fungovat jako brána mezi automatickými („předpozornými“) afektivními stavy a 
kognitivními procesy vyššího řádu, zejména když jsou afekt a kognice v konfliktu. Autoři navíc 
výslovně uznali, že termín „konflikt“ může zahrnovat i neočekávané poruchy fyziologie těla bez 
vědomého vnímání.
Kromě toho další výzkum také zdůrazňuje zapojení ACC do autonomní kontroly prostřednictvím 
jeho rozsáhlých spojení s insulou, prefrontální kůrou, amygdalou, hypotalamem a mozkovým 
kmenem [89–90]. Aktivace ACC v reakci na stimulaci IS blízko prahové hodnoty by proto mohla 
být interpretována jako signál konfliktu signalizující registraci podnětu, který, pokud nebude 
vyřešen, může vést ke změnám autonomní funkce. 

Podobně je amygdala dobře známá pro svou účast na zpracování emocí, zejména pokud jde o 
podmíněný strach, ale také v širším kontextu stresových a úzkostných psychiatrických poruch 
souvisejících s [91]. Několik studií dokumentovalo aktivaci amygdaly v reakci na averzivní 
smyslové podněty v různých modalitách, jako jsou pachy [92], chutě [93], vizuální podněty [94–
96], stejně jako v reakci na emoční vokalizaci [97–99] a nepodmíněné zvuky, které jsou vnímány 
jako averzivní [100–102]. Aktivace rAmyg u během expozice IS blízko prahu může být zvláště 
zajímavá pro posouzení rizika týkajícího se IS, protože je známo, že amygdala se podílí na 
sluchovém zpracování a může také hrát významnou roli při oslabení tinnitu a hyperakuzie [103]. 
Je poměrně dobře prokázáno, že sluchové vjemy mohou být zpracovávány dvěma samostatnými 
nervovými drahami, klasickou (lemniscal) a neklasickou (extralemniscal) [104–105]. Zatímco 
signály putující klasickou dráhou jsou přenášeny přes ventrální thalamická jádra převážně do 
primární sluchové kůry, signály putující neklasickou dráhou obcházejí primární sluchovou kůru, 
protože dorzální thalamická jádra promítají do sekundární a asociační kůry a také do částí 
limbické struktury, jako je amygdala. Důležité je, že neklasická dráha (často nazývaná „nízká 
dráha“) umožňuje přímé subkortikální zpracování podnětu v amygdale, bez zapojení kortikálních 
oblastí [106–107], a může proto hrát klíčovou roli v podprahové registraci „biologicky 
významných“ podnětů, jako je IS blízko prahu. Ve skutečnosti bylo navrženo, že u určitých forem 
tinnitu může aktivace neklasické dráhy zprostředkovat strach bez vědomé kontroly [108] a 
prostřednictvím svých spojení s retikulární formací [109] také ovlivňovat bdělost a vzrušení. Další 
důkazy o zapojení amygdaly do podprahového zpracování a autonomní kontroly pocházejí ze 
studie provedené Gla¨scherem a Adolphsem [110], ve které byli pacientům s jednostrannými i 
oboustrannými lézemi amygdaly předkládány emocionální vizuální podněty s různou mírou 
vzrušení podprahově i nadprahově, přičemž byly zaznamenávány reakce kožní vodivosti (SCR) 
jako měřítko autonomní aktivace. Zajímavé je, že bylo možné prokázat, že levá amygdala dekóduje 
vzrušení signalizované specifickým podnětem (spojeným s vědomou reakcí strachu), zatímco 
rAmyg poskytuje globální úroveň autonomní aktivace spouštěné automaticky jakýmkoli 
vzrušujícím podnětem (spojeným s podvědomou reakcí strachu). Zvláště pozoruhodné je, že 
zatímco rAmyg vykazovala zvýšenou lokální konektivitu v reakci na IS blížící se prahové hodnotě, 
ICA odhalila odpojení rAmyg od senzomotorické sítě ve srovnání s podmínkou bez tónu. 
Opakovaně se argumentovalo, že odpojení amygdaly od oblastí zapojených do
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Exekutivní kontrola může organismu umožnit udržet pozornost a podporuje pracovní paměť 
[111], čímž potenciálně napomáhá kognitivním kontrolním procesům po stresu [112]. Zajímavé 
je, že skutečnost, že funkční konektivita rSFG byla vyšší během stimulace blížící se prahové 
hodnotě, dále potvrzuje toto tvrzení. Opět několik studií dokazuje, že rSFG a rAmyg sdílejí 
funkční spojení a že aktivita mezi těmito dvěma oblastmi má tendenci být negativně korelovaná 
[113, 112]. Účastníci, kteří byli ponecháni v nejistotě, zda ke stimulaci došlo, se tak mohli zapojit 
do namáhavé regulace afektu a snažit se minimalizovat důsledky stresu na kognitivní kontrolní 
sítě.

Naše výsledky nám konečně umožňují vyvodit některé předběžné závěry o potenciálních 
dlouhodobých účincích na zdraví spojených s (sub)liminální stimulací IS. Několik studií uvádí, že 
dlouhodobé vystavení hluku může vést ke zvýšení hladiny katecholaminů a kortizolu [114–116]. 
Kromě toho byly v souvislosti s expozicí podprahovým a téměř prahovým IS zaznamenány také 
změny tělesných funkcí, jako je krevní tlak, frekvence dýchání, EEG vzorce a srdeční frekvence 
[117–118]. Proto se domníváme, že některé z výše uvedených autonomních reakcí by ve 
skutečnosti mohly být zprostředkovány aktivací mozkových oblastí, jako je ACC a amygdala. 
Zatímco zvýšená lokální konektivita v ACC a rAmyg může odrážet pouze počáteční tělesnou 
stresovou reakci na (sub)liminální IS, domníváme se, že stimulace po delší dobu by mohla mít 
hluboký vliv na autonomní funkce a mohla by nakonec vést k vzniku symptomů, jako jsou 
poruchy spánku, záchvaty paniky nebo deprese, zejména pokud jsou přítomny další rizikové 
faktory, jako je zvýšená citlivost na hluk nebo silná očekávání ohledně škodlivosti IS. Ačkoli v této 
diskusi klademe silný důraz na fyziologické důsledky dlouhodobé expozice IS, bylo by také 
zajímavé zjistit, zda by náš rsfMRI paradigmat mohl být použit k propojení změn globálních stavů 
mozku vyvolaných IS se změnami v oblasti zkušeností.

Závěr
Podle našich znalostí je tato studie první, která dokumentuje změny mozkové aktivity v několika 
oblastech v reakci na dlouhodobé IS blízko prahu pomocí fMRI. Analýza ReHo odhalila vyšší 
lokální konektivitu rSTG, ACC a rAmyg pouze v případě, že IS bylo podáváno blízko prahu 
slyšitelnosti, a ICA ukázala, že účinky lze nalézt také na meziregionální úrovni. Na jedné straně se 
zdá, že tyto výsledky podporují hypotézu, že (sub)liminální IS může ovlivňovat organismus 
prostřednictvím podvědomé zpracovatelské cesty (která pravděpodobně zahrnuje signální 
transdukci zprostředkovanou vnějšími vláskovými buňkami). Na druhé straně, i když byla 
stimulace IS nad prahem slyšitelnosti jasně slyšitelná, nevedla k žádným změnám mozkové 
aktivity, což by mohlo naznačovat, že signál zpracovávaný podvědomou sluchovou cestou mohl 
být utlumen shora dolů prostřednictvím mechanismů pozornosti. Vzhledem k tomu, že reakce 
mozku na dlouhodobou IS blízko prahu zahrnuje aktivaci oblastí mozku, o nichž je známo, že 
hrají klíčovou roli v emoční a autonomní kontrole, lze také stanovit potenciální souvislost mezi 
změnami mozkové aktivity vyvolanými IS a vznikem různých fyziologických i psychologických 
účinků na zdraví. Přechodná upregulace těchto oblastí mozku v reakci na IS pod prahovou 
hodnotou nebo blízko prahové hodnoty může tedy odrážet počáteční stresovou reakci těla, která 
nakonec podporuje vznik symptomů, jakmile dochází k opakované stimulaci a vstupují do hry 
další rizikové faktory. Nicméně k potvrzení těchto zjištění a k lepšímu pochopení zdravotních 
účinků souvisejících s IS je zapotřebí další výzkum, zejména longitudinální výzkum expozice.

Příspěvky autorů
Koncepce: CK BI JG SK RK JH.
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